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191Ahstract (cont'd.)

P[( ! u (x)] converges weakly to G(x)[I + Zfl (-logG(x)fi
n n i=l i! P f

k- .,.. k where natural interpretations can be given for the pj, This

generalizes certain results due to Dziubdziela (J. Appl. Prob. 21, 720-729

(19S)), and Hsin- et al. (Technical Report No. 150 , Center for Stochastic

Processes, UNC). It is further demonstrated that, with minor modification,

* the technique can be extended to study the joint limiting distribution of

tie order statistics. In particular, Theorem 1 of Welsch (Ann. Math. Statist.

43, 439-A46 (1972)) is generalized, and some links between the convergence

of the order statistics and that of certain point processes are established.
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ON THE EXTREME ORDER STATISTICS FOR A STATIONARY SEQUENCE

by

Tailen Hsing

Texas A & 1 University
and

University of North Carolina

Abstract. Suppose that ( .} is a strictly stationary sequence which3

satisfies the strong mixing condition. Denote by M(k) the k-th largest
n

value of E, 2 " n and {u (.)} a sequence of normalizing functions

n n
for which P[IM~ n u n(x)] converges weakly to a continuous distribution

l G(x). It is shown that if for some k = 2, 3,.., p[iM~k) 5 u (x)] converges

for each x, then there exist probabilities P1 ,'', Pk1 such that

5 u (x)] converges weakly to G(x)[1 + J (-logG(x))i pi] for
Pmn n pi=]fo

j : 2,.., k, where natural interpretations can be given for the pj. This

generalizes certain results due to Dziubdziela (J. Appl. Prob. 21, 720-729

(1984)), and Hsing et al. (Technical Report No. 150 , Center for Stochastic

Processes, UNC). It is further demonstrated that, with minor modification,

the technique can be extended to study the joint limiting distribution of

the order statistics. In particular, Theorem I of Welsch (Ann. Math. Statist.

43, 439-446 (1972)) is generalized, and some links between the convergence

of the order statistics and that of certain point processes are established.
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1 Introduction

Let { .} be a strictly stationary sequence of random variables satisfying

S. the strong mixing condition (also known as uniform or a-mixing). For each n,
le (1) e(2 the order statistics of and":,,let ,M I> a . >M n  esaitc ' n d

.;.n n n n

write M for M( 1 )  for convenience. Suppose there exist normalizing
n n

functions v, n 1 1, and a continuous type distribution function G for

w
which P[M n S v (x)] w G(x), where denotes weak convergence. The following

questions can be asked:

(a) D es P[ (k )  ,
(a) Does P =k n v n(x)] converge weakly for each k > 2?

n( kn

(b) If, for some k = 2, P[,M) _ v (x)] converges weakly, how is the; .-' ' ' n n '

- limit characterized?

In the i.i.d. setting the answers to the above questions are well known

(cf. Leadbetter et al. (1983)); namely for each k 2,
Sk-i '

MP[1( k ) = v (x)] WG(x)(l + [ (-logG(x))
n n111. -. nj=l j!

where 0 logO := 0. For a dependent sequence, however, the answer to (a) is

not necessarily affirmative. Mori(1976) provides an example of { } for

which P[M :_ v (x)] converges weakly, but P[M v (x)] does not.
n n n n

.: Exploiting the ideas in Mori(1976), it is possible to construct examples to

show that for any fixed k Z 2, the weak convergence of P[M v ,
n n

I - j k-I, does not in general garantee that of P[,M) = v (x)]. However,
n n

"h,, following question is unanswered:

k) Px)] converges wek]v. Does

P . n n

it roIlow that P[<l ( v (x)], 2 _ j = k-i, all converoe weakly?
n n

. r(MZrd t,) ( ) in the dependent case, two papers ;ire relevant.

............. ......... ...... , ' ,"
-~~ 
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Under certain constraints, Dziubdziela(1984) and Using et al.(1986) characterize
the limiting distribution of P[M ](k) that (k) n, v< V(X)], assuming thtP[>1 k ) -< n(X)I

-- n n n

converges weakly for each k. In view of the examples mentioned in the

4 previous paragraph, their studies, though useful, are not sufficient to answer

(b).

In this paper some problems connected with the above (a') and (b) are

considered. First, in section 2, we briefly discuss the assumptions stated

earlier, and prove a technical lemma. We then study in section 3, for any

fixed k, the necessary and sufficient conditions for P[M(k) _v (x)] to:.'4. ,n n

have a limiting distribution. There answers to both (a') and (b) are

obtained. It is seen in section 4 that the method in section 3 can be extended

(1) _ ~ (k)_to study the limit of P[M v (x) M v (y)] for any fixed k, and,
n n\I n n

in particular, a result in Welsch(1972) is generalized. Finally, in section 5,

we discuss the connection of the convergence of the order statistics and that

of certain point processes which were studied in Hsing(1985) and Hsing et al.

-" " (1986).

.-
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2. Preliminaries

To avoid repeated reference, assume without further mention that the

conditions in first paragraph of section 1 hold throughout the paper. It is

known that the strong mixing condition is often too stringent for the purpose

of extremal theory. Nevertheless it is technically convenient, and to replace

it by a more appropriate mixing condition is now considered straightforward

(cf. Leadbetter et al.(1983), and Hsing et al.(1986)). That G is continuous

is hardly a restriction; it is the case if, say, G is of extreme value type

(cf. Leadbetter et al.(1983)). Under this assumption, there exist normalizing

functions u for which
-n

-Tlim P[H u (T)] = e , T > 0.n~ n n

For notational convenience we shall throughout work exclusively with un.

For later reference, we state without proof the following lemma which is a

version of some well-known results (cf. Loynes(1965) and Leadbetter et al.(1983)).

. Lemma 2.1 For each 7 > 0 and T > 0,

lim Pim 5 u (:)] = lim PP < u (T)] = lim P[M 5< u (OT)] = e

no n n-o n n-)*m n n

where, here and hereafter, [y] denotes the integer part of y. Thus it follows

that if C1 < C2 , U[n/cl (T) > un(n0T) and Un(01T) > un(72)) for all

sufficiently large n.

V.- It is of interest to consider whether parallels of Lemma 2.1 exist for order

statistics other than the maximum. The following lemma solves this problem.

Lemma 2.2 Suppose for some k > 2, T > 0, and 7 > C > 1 either
u 2

04 3
V2
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(k) (k)
'P[kn < u (T)] or P[M kn  u (OT)] converges for each a in (O, u

nm n n n n u(

The for each c in (O ), un P[M nPM u
u nf*M o:~fn] 5u --

(k) o ec
% *. Proof First assume that P[M~k  - u (CT)] converges for each a in (0., a

n n J

For 0 and a' with aZ < a < a, < a¢, u

limsup p (k) limsup P[M k[n/']] /"'( 2.1 ) n-*O dn ] = Un ( n-o [)[ / 'II [/3

lispP[P(k )  ]( P M(k) <" ms' n- o n < U[n/ 0' ) =<  olim P n _- Un"

Here the first equality follows from the identity {n: n - 1} = {[n/a']: n - 1},

the second equality holds since 0 < n - [0'[n/C' ]] 5 C' and P[M~o, ] >

U[n/,] (T)] - 0, and the inequality follows from Lemma 2.1. Similarly, for

3 and C" with cY < 0" < C < C

;..::, 2,_) li inf [ ([k)-  (

(2.2) liminf P it (k) - u (T)] _ lim P[M(k) - u (OT)].
n[ Ca n] n n-oo n n

By (2.1) and (2.2), for o and C., 1 5< i 5 4, with C < a1 < 02 < C < o3 <
: <3, <i3,

lisp ([ k)  = I(k) < (k))
limsup P[M n] -T)] --liM < u(a T)] 5 lim P[Mk) (CT)]
But< n3 n [ n n

(k) k)
=in lim P[M )  u (G2T)] - liminf P[M u ( T)

B n - s u p n n c o [ I I n ] =<  u n("

(k) 0 (k)itndso ze i[ < u (T) I imsUP P [ o n] un

f...< limsup "P[M(k) --U(T)] - P[M (k )  -< (T)])

SO... - [n] n [Gn Un(

.<lim " > Un(T) ] = I - e-(4- 1)

N

n - -W ( , 3 4 -° i1 ) n ]n

[- which tends to zero if C4 0.J O This shows that lim P[M (k u (.T)] is

-'" -)ntinuous a Since for , and 2with <o; <  
(_3 <u

4

"..- ~ - " 'Sb% -V 5 < J.

.,e .



p(k) p[ p(k)C(k

lrn P[%l) u (0 T)] l imini riik . u !t)]S limsup P[I k) j
n- n n-a [on] n n-.n '[on] n

5 ur p[\(k) su (aT)
!£ --<lim P[M kOT) ]

n-"O n < n 2

by (2.1) and (2.2), it is easily seen that P[M (k) < u (r)] converges and has
[on] = n

the same limit as does P[M(k) :- u (OT)].
n nSppos nowP[M k)

Suppose now [] < n (T)] converges for each a in (a,, au). Using

Ky arguments similar to the ones in getting (2.1) and (2.2), it can be seen that

for a, o, and a2  with a < a1 < a < a2 < ou ,

nlim P[Mnk) < un (T)] =< liminf P[M(k) _ (aT)] _- limsup P[M _ Un(OT)]
n-- [0 a 2n n n-* w n n-xco n n

= lim P[M (k )  < u
n- in] = n

As before, the difference between lim P n < Un(T) and lim P[M
"-o 01n n-xoo [Gn

. U(T)] tends to zero as a1  and a2  tend to a. This concludes the proof.

Q.E.D.

We remark that, by applying the triangle inequality, Lemma 2.2 can be

extended to situations where finitely many order statistics are involved. In

particular, Lemma 2.2 remains true if, in the statement of the lemma,

P[KV k  < u (oT)] and P[M[nk) < u (T)] are replaced by P[M (n u (OT),
n"nn*nan

I '%l ( k )  < U ( ') an P[ 1) <l (k ) 'k) u (T')] and PI n] = un(T), M[n] < u (T')], respectively. This

fact will be applied in section 4.

.2'



0

3. The Limiting Distribution of >ik(k)
. n

The essence of our theory lies in the fact that the sequence $1 2

can be divided into "asymptotically independent" groups (:(irl)rn+,. , .jr
n n

i > 1, of size r each (in the precise sense as described bv Lemma 3.1

below), where {rn I is determined in the following manner. Let {Z n be anyn n

sequence such that Z /n - 0 and c(Zn ) n 0, where a(*) is the mixing' nn

function of the strong mixing condition which holds for { .}, and let {r I
n

be such that

(3.1) n/r , en/rn(Z 0 and en/rn Z /n - 0.

* For any such {Z I and {r }, it is not difficult to show (cf. Hsing et al.n n

(1986, Lemma 2.2 and 2.3) that for each T > 0,

n/rn
(3.2) lime /n P[ > uM)] 0

n* n

and

(3.3) lim n/r P[M > u (T)] = T.
n-- n r nn

It will soon be clear that [Zn ) and {rn ) only function as step stones in

the proofs, and indeed the theory is independent of the specific choice of

these sequences. The following lemma is essential.

Lemma 3.1 Let T > 0, a > 0, and k = 2,3,... be constants. Write k =n

[:n;/r ], and let X , 1 m s k , be i.i.d. r.v.'s having the samenfnl n
rn

distribution as does L 1( . > u (T)) where 1() is the indicator function.
j=l J n

Then

kn
P[ % < )] - P[ X < k-i] - 0 as n -.
[n] m=1 n,m

mrn

Prot'. rlte X = 1 ( > (T)), 1 X m a k . Since
nn j=(m-1)r +1

n

%- 6

0'



P[mon] = U(T)] = P[jY 1 (Z. > U (T)) !5 k-i], it is easily shown that

[(ok) nn

(3.4) [ sn ( k()] - P [  X <- k - 11 - 0.-[on n ~ n,m

kn
For each fixed s = 1,2..., the set [ X = s] can be written as the

_ m n,m
kn + s - I (kn + s - m=l

union of ( k disjoint sets of the form [Xn,m = sm
kn" S' (k -S. nr

1 :- m - k] where s s. For each fixed choice of such s, I m k ,Sn 1 i n

Ip[X =Sm, 1 m k]- PX n =s

n'm n M1 nm m

< (k n - 1) (a( i) + 2 P1> . > u (7)])n'< n n "

by some standard arguments (cf. Leadbetter et al.(l983)). Thus

OS n n
SP[ X m = s] - P[ = s]

m=1 nm= n(3.5) mm

:. < (k - 1) ( k n  + s (,(' +21[
=nn s nZ n

It is obvious _hat (k n- ) (k n + s - n < ek, for large n. Thus the

dominant side of (3.5) tends to zero by (3.1) and (3.2). The result follows

on combining this with (3.4). Q. E. D.

For i 1 1, write

r n rn
(3.6) (i;) = P[ > u = i I ( . > u > 0]

n< (T ) I 1(= 1 n >~ n n

J=1 j=1n

and denote by ' (1;7) the Z-fold convolution of T.v), namelyn ' n

.0, i < ,,'-.(3. ) 7<' ; 0 i<

n IS1, - (r, i7



k-i1 2 k-ii"''  .- (k) -OTk i ( s) - .
Corollary 3.2 P[" [on] < = e [k 1 7 n (i'T)] + o(I)-.']v =I Z ! i=Z n

where 7 (i;T) is defined by (3.7).

n
kn ,,

Proof 7 1 (N > 0) is distributed as binomial with mean k P[X > 0] =
m=1 n,m n n,l

k P[In > U (T)] which tends to OT as n tends to o by (3.3). Thusn r n
kn n

I (X > 0) converges in distribution to a Poisson variable with mean
m=I ~n,m
OT, from which the result easily follows. Q.E.D.

-* The main result of this section is the following.

Theorem 3.3 Let k -- 2 be a constant. If P[mk) u (T)] converges for
n n

each T > 0, then for any T > 0 and I < i s k-i the probability 7T (i;T)

defined in (3.6) converges to some Tf(i) which is independent of T, and,

in this case,

-UT j- i j-1(3.8) lim P[M[n < Un e- + z, z ' (i)],

n - c [an] n U=i Z! i=e

> 0, T > 0, 2 j k,

where
Tr* (i) 0 , i < Z,

.:-"i ... 7 (i ... 7-( i ) -

i + r+i =i

Conversely if for some T > 0, Tr (i;T) converges for I S i S k-i, then
n

k) I (-)I converges for each T > 0.%.-.n n

. roof ["i 5t {ssum tha P[ (k )

P Firt .ssuime that P _"I) u (T)] converges for each > 0. Fix
' ., k-1 zl~ k=1

a > for now. B' Lemma 2.2 and Corollar3 > ,1 (i T

Z= 1 -

cjnv.Ir's >or 1ich I. 'his implies that (t;), 1 2- k-i,

,,0 0%
.4 .
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all Lon-erge-Ik-
all converge. Thus [7(i) [-K (I;7)] k- converges, or - (1":

n n n
k- I :.- k--

converges, and [7(i; = [ .I;) - + (k-27[ (i;)< -  (2;T)
i=k-2 n n n

converges, which implies that 7 (2;T) converges, etc. It follows from a

simple induction that for each 1 -< i =< k-i, TT (i;T) converges, say, ton

(i;7). Hence Corollary 3.2 implies

3.9) lim P[ I( J ) <- T - ) (T)] e- +]
[:n]nnnr)] - e [1 + ;.;i

7 > 0,2 j k.

To snow (3.8), it now remains to show that 7,(i;T) is independent of T.

Fix -_> l It follows from (3.9) that for 2 !_s j < k,

= ej[ j-i T

rn H nJ) - + "9 i71 " i
lim P[I - u ( I )] = e - [I + 7 - , i .r (i, )],

nn -l 
Z

.. .. n-o [ -n ] =i 'i=Z7
,., 2

. ~~lim P[%I(J) "=u(to] =e - [+ 7 -=- T ('T ]
-n ni n

But Lemma 2.2 implies that the two limits are the same for each 2 j k,

which in turn implies that 7(i;T,) 7(i;'7,), 1 5 i < k-i. This Droves

, is worrh noting t.h I, in the ibove derivation, the assumption that

I i n.'r: r ., can be relaxed considerably; for

X'1 M ,, i 1 , hno l)'t o -i t P1(n) uI Un)] converges for al
n n

"ome > *) 5h i make us{ rf t his fact in the following part of the

-. nversel, suppose for some > l, C (i;'T) converges for 1 k-I.

(k)
Unn by (orol Iar 2, ''.I' u ( ) converges for each > }. It thus

np

"' "" "' ""'._< " """""" "" < "'""'/ '"/' """'"" "2.. ,...-...~. -,.--...",-.v.....--...-.~ -'.:



(~k)
follows from Lemma 2.2 that P[> ) = u (jT)] converges for each : > 1.

n n

The first part of the proof and the remark in the preceding paragraph now

imply that P[H(k) < u (7)] converges for each 7 > 0. This concludes the J- n n .

*proof. Q.E.D.

The following corollary is easily shown.

Corollary 3.4 If for some T > 0, 7 (I;T) -I 1 as n - o, then for all

k - 1 and T > 0,

':- (k) -k - Z
(3.10) lim P[ <Uk) = e k- 2

n n - 2!

* , Conversely, if (3.10) holds for some k ? 2 and T > 0, then 7 (1;T) I
n

as n -, and hence (3.10) holds for all k _ 1 and T > 0.

Proof Assume first that 7, (l;T) I as n o for some T > 0. Then it is
n

simply seen that 7 (i;T) - 0 for all i _ 2, and (3.10) follows readily
n

from the theorem. Next suppose (3.1) holds for some k - 2 and T > 0. It
k-i

follows from Corollary 3.2 that lim L TI (i;T) = I for all Z = 1,...,k-1
n-*oo i=z n

which implies that lim -T (1;T) = I and the conclusion follows from the

first part. Q.E.D...: :"

Note that the condition "7 (1;T , 1" in Corollary 3.4 is reminiscent
n

(of the con(itin (17) in Lovnes( 1965), and the condition D'(u ) in

*,.. .-



I(

The Joint Limiting Distribution of M(I) and M

e now consider the normalized limits of I1 and M jointly for
n n

any fixed k > 2. In spirit of (3.6) and (3.7), define, for T > T' > 0,

r nrn
(i;TT') ; P[h 2 1 (:. > u (T')) 0, 1 ( . > u (T))

n j=1 n j=1 n

r[> U ( > u > 01,
% n

0, i < Z,

r = 
,{

ni (*?

where r is obtained in (3.1). The following result parallels Theorem 3.3.
1)n

Theorem 4.1 Let k >- 2 be a constant. If P[M n < u (T'), Mk) =< u (:)]n n '"n n

converges for each T and T' > 0, then for anv T > T' > 0 and 1 5 i - k-i,

"-- (i;:,:') converges to some Q(i;T'/T) which depends on T and T'

through their ratio, and in this case for 0,T,T' > 0 and 2 - j k,

liru P[,' Un() < (T)]

n-KO [on] n ([On] n
-OT'

e 0 < T T',

j-1 Z j-1e [i + (3() (i;T'/T)], 0 < T' < T,

Z'"1 ZI i=Z

0 0, i< Z-. _ ,2 (i:s) = {
- [. .. p(i ;S) ... Q(i ;s)q i .

"-'< i+..*.+1 =i

.::... ir >l, I~r-<_
r

('bnvrselv, i! there exists a T such that Qn (i;T,sT) converges for each

OP14-%.%n

2II
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-~~~ ~ Tx -. 
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y 
-. -'t~ -.w r w w ~ r~~ - - - - - - -

) < s K I and 1 i -- k-i, then P[ )  u (T') 1(k) m u T)] converges

n n n n

for each 7 and 7' > 0.

Proof %e remarked after proving Lemma 2.2 that The result may be generalized

to where two or more order statistics are involved. The same remark applies

to Corollary 3.2, which can be extended to give

."1"< rv 1 (j) <
'[Cm] u ( '), [on u (T)]

(4.3) -f0t' [n
-e 7 + o(I), n < T',

:..- j- o 2. j-i

e [1 + Q n (i';T, ')] + o(1), ) < ' < T
U 1/ .= 9.! n=

fOr each 7 > 0 and j 2 2, where n is defined in (4.1). Suppose
n

- u (), ( -< u n()] converges for each T, T' > . it can be• ..]."nn nn

sh,.n, as in the proof of Theorem 3.3, that for any T > T' and I k-i,

:j') converges to some o(i;T,T') and it follows from (4.3) that

(4 4)(1) - T, (j)
- €- lim vt~l (3n]  - Un( " [on] n< u (.

e , 0 < T - T,

• . --."T j-1 )"-,:T

e + )< 7' <
" , - > .L = 9 .! 1 = 9 .

-l-or any -> a and -. j k. Fake TI,' ,

i>n[ and 
I .'t

2 > I. =  
7 p !1

for 2 k

1 jot f)! 1 'I , *1 r
y. . -' J 

-

["#"".- ,: 1=.-

**w*-'".*%. 1 2** * .
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aind

n n n n

T i, f j-1 T j-1

, - [ I + 2 -
r.-- '-

[-7",e')' and - -, it follows from the variant of
Iut, sn', -~ nd -- heo

-emma . mentioned immed,atelv after Lemma 2.2 that the two limits are the

.same :r 2 k. This shows that a(i;-,), I i j k-i, depend on T

and -' through -' and (4.2) is proved. The remaining steps of this

proor parallel those in the proof of Theorem 3.3 and are therefore left for

the reader. Q.E.D.

It can be observed from the above proof and the proof of Theorem 3.3 that

-ur method lends itself to still more general situations. In fact, the

-inform of P[I] u) 1 < 
_ ] can be thus determined for

an'; fixed choice of k-, and I. However, we shall spare the

.etaiis since not much more content can be added by making them specific.

-ome properties of the probability (i;s) in Theorem 4.1 are included in

the following result.

eh ,rem 4.2 Let k _= 2 he fixed. Assume that P U (T' 1(k) u
n n n n

,nver-es tur each - and C' > 0. Then the probabilities Q(i;s), 0 < s" 1,

" "-i, in Theorem 5.1 satisfy the following properties:

I ;.) is nonincreasing in s,

7 (',;s) 1 1-s for each s e (0,I),
r - ~r r

n n
: ; = "(i) lim P[ 7 1 (< > u (C)) = i [ I (. > u (T) >

.,-- n-*m j=1 n J

, 1- it function of s, is concave,

--. . , . - (-t i d t tor oi h i I, - , k-1.

.-5.. . .

04,i".
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Proof By (3.3) and Theorem 4.1,

r r

C(i;s) = lim n P[ 1 > u (S)) ,>
rn n j=n

That (a) holds is trivial. To show (b), observe that

k-ir r- .k- 1 n n
0 <  C(Z;s) = En--- P[ X 1 (I . > U n(s)) = 0, 1 ($. > U n(1)) = k-i]

n rn j=l j=1

r r
n n

S nlim P1 I 1 (Cj > Un(s)) = 0, [ 1 (j > Un(1)) > 0]
n j=l j=l

r r
n n"-4= lim 11__ (p[ I g > Un(1)) > 01 P[ Z I(j > Un(s)) > 0])

r n j=l j=l

r r s
= lim ( -- n ) = 1- s

r n ~r n nt n

" bv (3.3), and this shows (b). It can be shown similarly that

r r
n n

n j=l j=1

r

-" I ( . > Un(1)) = i])
.J=l

r
n'-?" = --< n p[ 7 1 ;0, S u s ] -- >_o 0.

n j=l ]>n
r r

n n
Thus Pf 2 i (r. > u (1)) = i[ [ I (j > u (1)) > 0] converges if )(i;s)

j=1 n n',..< J = j=l
converoes as s 0 0, which it dose since Q(i;s) is bounded above bv one and

Ls nonincreasing. This proves (c). It remains to show (d). For this we
i

write O(s) = i O(Z;s) for a fixed i, and follow the steps in Theorem I

of 'elsch(197'3). It suffices to show that for each () < r < s < 1 and > >)

for which s + Es < 1, we have

14
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o(s+Es) - n(s) .. (r+Er) - O(r)
(~) s ErVm.•

For each selection of such r, s, and E, we can find 0 < T' < 9 < T <

T.2 < 1 by letting

I' < ' = E' = ' /sE T ' / r.
1 ' 2 1 1' 1 1 2 1

T -TI' -11 T2-Tf

1hu 1T r = T ' E = ' T - T and r='7 2 T I''-, T
.TI-T T T ,

- ' In terms of the T's, (4.5) becomes
1 2 T2

T' T' , T

(46) i ? 1 <2 [
1..2 2

which we now show. It is readily seen from (3.3) that for T < T'

r r
n n

T n P [  I > U > U

n j=l j=1

(4.7)

lim -L- P[M( I )  u (T'), M(i+l) < u (T)].n- c r I rn
n n n

Since for all large n

P[ (  u (T), M(i+1) (T P[M() u (T') m(i+ (T
r r nn n n n

<n =~ Un(T ] - [ _- U (T') ,< U (T,,)],
•r n nr n_ r n nr nnr

* (4.6) follows simply from (4.7). This concludes the proof. Q.E.D.

."elsch(1972) proved the claims in Theorem 4.1 and Theorem 4.2 (a), (b),

and (d) for the case k = 2, assuming that there are constants a , b , and

a distribution function G such that lim P[M n an x + bn] = G(x). In this
n nnn-o

connection, %1ori(1976) showed that (a), (b), and (d) of Theorem 4.2 fully

d 15
ho %
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characterize the cluster probability o(l;s) in the sense that for each

function C(s) satisfying the three conditions, one can construct an

A-mixing stationary sequence - for which there exist constants

an, b , and a distribution function G such that

rn+b M (2) ~v b
i)2lira P[ -- a x + bn M < a v + b}

n-*o n n n n n' n

G(x), y x,
-l

G(y) [1 - of(log G(x) / log G(y)] log G(v)}, y < x.

N-1

,to.°e

Op ,,
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"' 5. The Convergence of Certain Point Processes

For notation and theory of point processes we follow Kallenberg(1983).

Hsing et al.(1986) studied the so-called exceedance point process N

which consists of the points tj/n: S. > U (T), I !- j = n). It was shown

there that if N(T) converge in distribution w. r. t. the vague topology in

the space of locally finite counting measures on (0, 31, the limit must be

compound Poisson. The following result states the connection between the

N(T)(k,convergence of Nn and that of P!IM(k) un (T)].

Theorem 5.1 N converges in distribution for each T > 0 w. r. t. the
n

vague topology in the space of locally finite counting measures on (0, 1

(k)
if and only if for each T > 0, P[M u (T)] converges for each k 1,n n

and

(5.1) lim lim P[1 (k) - u (T)] = I
k-Ko n-*oo n n

Proof If N(T) converges in distribution to N(T) then by the continuous- n

mapping theorem unT)]= P[N (0, 1] - k-1] converges tomapping thoe [n n( n

P[N(T) (0, 1] _ k-i] as n tends to o% and hence

(k) (T)
lir lim P[ - u (T)] = lim P[N (0, 1] !-5 k-l] = 0.
k-- n-co n n--

Suppose next that the converse is true. Then Tn (i;T) - some 7T (i) for.' n n

eacn i, and

I lim lim P[II(k) u (T)I
k-*n n-*oo n n

• "-'"( 5. 2 )
k-I Z k-i .

m= i e [I + L (1

17
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by virtue of Theorem 3.3 and monotone convergence. But (5.2) implies that

7T (i) = 1 for each 2., or, equivalently, T(i) = 1. That N )
i=Zil

* converges in distribution follows from Theorem 4.2 of Hsing et al.(1986).

Q. E.D.

In addition to lim PH M u (T)] =e , T > 0, we now require that,
n-m n n

CKfor each n, u n be nonincreasing, left continuous, and such that

*~~i P[U P (T') < U u(T1 ]=.

T -0
I

Define uj (-1 sup{T > 0 un)} un1 (C) < T if and only if > un (T).

4Consider the two-dimensional point process N nwhich has the points

-b'.

t(j / n, u ni) j _ 1). The limiting distributions of point processes

of this type were studied in Pickands (1971), Resnick (1975), Weissman (1974),

Moni (1977), and Hsing (1985). The following result was obtained by Hsing

(1985), in which a detailed proof can be found.

Theorem 5.2 If N n converges in distribution to N w. r. t. the vague

topology4 in the Space of locally finite counting measures on IR x IR=

Sr 9i = then N consists of the points ((Si ThYt i 1(I,

= 1~ 1ni

-'er (St, T. 1 1, are the points of a mean one Poisson

.. onrg Y distrI K u t are the points of a point
+ + 1] 1

1 i tah I is in atom, , re iden ti caY

-. rfor eaihn be, noiin iro mtui l I v independents

.-.,*,.-I - , . - . -'-'.
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.- Sketch of Proof It can be shown that a point process E has the representa-

tion described in the theorem if and only if it satisfies the following

_ properties:

(i) g ; for each c , 3 > 0, where g 3,(x, v) (ax + 3, 1 v),

(x, v) IR x R

i~i,  For any choice 1I .... I of disjoint intervals of the form [a, b)
1' k

in 1+, and any choice J, ... 9 Jm of intervals of the form [c, d)

in IR the m-dimensional random vectors ((Ii X J I X Jnt

1 = i s= k, are mutually independent, where k and m are arbitrary

4- positive integers;

(iii) P[ , ((0, 1) x (0, T)) > 0] e , T > 0.

For the point process N in the present theorem, (i) follows from stationarity

of t.} and a variant of Lemma 2.2, (ii) holds since {J} is a-mixing,13

and (iii) follows from the assumption that lim P[M < u (T)] = e , T > 0.¢.-• n o n n

Q.E.D.

The interpretation of the convergence of Nn' in terms of the order

statistics, car. be summarized to give the following result which we state

w'.ithout proof.

Theorem 5.3 N converges in distribution w. r. t. the vague topology in the
n

.pace of locally finite counting measures on JR x JR if and only if, °-•+ +

PK. u (Ii), I t i < 1 converges for each choice of > 0), k 1
n n I

", 1-, -ind (5. hoIds for each T > U.

-4...

.4. A. J '

I'.0

,'9

* . " p' - - * "~ " ' "\ '",<"~ -' - 4' - . ' ' -% " -".i" .4' 
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